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1 Introduction

In this short note we will give a short introduction to the method of brackets following the articles
[ABFP23], [Amd12], [GS07], [GS07] and [GMS10]. A proof of Ramanujan Master theorem was first
published in the book ”Ramanujan: Twelve Lectures on subjects Suggested by His Life and Work” by
G.H Hardy. Where Hardy proved the following theorem,

Theorem 1 Let us write s = x+ iy and let ϕ be a holomorphic and |ϕ(s)| ≤ CeC1x+C2|y|, throughout
H(δ) = {z ∈ C | x ≥ −δ} for some constant C and δ > 0. Whenever ϕ satisfies these conditions
we say that ϕ ∈ R(C1, C2, δ). Further suppose 0 < x < δ and let Φ(s) be the holomorphic function
ϕ(0)− sϕ(1) + s2ϕ(2) . . . which converges throughout H(δ) because of our assumptions then,∫ ∞

0

Φ(t)ts−1 dt = ϕ(−s) · π

sin(πs)
.

A simple corollary of this theorem proves that∫ ∞

0

ts−1

1 + t
dt =

π

sin(πs)
,

for 0 < Re(s) < 1. Which can also be computed using the Feynman trick. Furthermore a easy

exponential version of this theorem can be deduced by rewritting ϕ(s) as λ(s)
Γ(1+s) and using the formula

Γ(s)Γ(1− s) = π
sin(πs) .

Corollary 1 Let λ ∈ R(C1, C2, δ). Further suppose 0 < x < δ and let Λ(s) be the holomorphic

function λ(0)− s
1!λ(1) +

s2

2! λ(2) . . . which converges throughout H(δ) because of our assumptions then,∫ ∞

0

Λ(t)ts−1 dt = λ(−s)Γ(s).

1.1 The Method of Brackets

The method of brackets gives a straightfiward generalization of the master theorem which allows for
computation of multivariate integrals. The method of brackets is a formal technique to computing
certain integrals. We with some notation, we let ⟨s⟩ denote the informal integral

∫∞
0

xs−1 dx and let

ϕn be shorthand for (−1)n

Γ(1+n) = (−1)n

Γ(n+1) which we call the indicator of n. Now from expanding e−x and

interchanging summation and integration it follows trivially that

Γ(s) =

∫ ∞

0

xs−1e−x dx =

∞∑
n=0

ϕn⟨s+ n⟩.

Now we can begin with a formal derivation which will give us our first rule this method. Consider
the formula

Γ(s)

Cs
=

∫ ∞

0

ts−1e−Ct dt,
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then by letting C = (x1 + . . .+ xn)
−1 we have

(x1 + . . .+ xn)
s =

1

Γ(−s)

∫ ∞

0

t−s−1e−(x1+...+xn)t dt =∫ ∞

0

t−s−1e−x1t · · · e−xnt dt =

∞∑
m1,...,mn

ϕm1
· · ·ϕmn

xm1
1 · · ·xmn

n

⟨−s+m1 + . . .+mn⟩
Γ(−s)

From this derivation we assign the following three rules,

1. For the expression (a1 + . . .+ an)
α we assign the expression

∞∑
m1=1,...,mr=1

ϕm1,...,mr
am1
1 am2

2 · · · amr
r

⟨−s+m1 + . . .+mn⟩
Γ(−s)

.

2. For the series of brackets
∞∑

n=1

ϕnf(n)⟨an+ b⟩

we assign the value
1

a
f(n∗)Γ(−n∗)

where n∗ is the solution to an+ b = 0.

3. For the double series∑
m1,m2

ϕm1ϕm2f(m1,m2)⟨a1,1m1 + a1,2m2 + c1⟩⟨a2,1m1 + a2,2m2 + c2⟩

we assign the value
1

|det(A)|
f(n∗

1, n
∗
2)Γ(−n∗

1)Γ(−n∗
2)

where A =

[
a1,1 a1,2
a2,1 a2,2

]
and n∗

1, n
∗
2 are the solutions to

[
a1,1 a1,2
a2,1 a2,2

] [
n1

n2

]
=

[
c1
c2

]
.

Notice now that rule 2. with a = 1, b = s gives us the master theorem so rule 3 can be seen as a
multivariate generalization of the master theorem. We will provide a rigrous proof using distributions
of the master theorem in section 5.

2 Applications of The Method

Consider the integral ∫ ∞

0

e−x2

dx =

∞∑
n=0

ϕn⟨2n+ 1⟩.

Then by rule 2. this is 1
2Γ(

1
2 ) =

√
π/2. Similarly it follows that∫ ∞

0

e−xs

dx =

∞∑
n=0

ϕn⟨sn+ 1⟩ = 1

s
Γ(1/s).

Which can also easily be seen from the substitution u = xs. However we can further generalize this
formula using the method of brackets since∫ ∞

0

∫ ∞

0

e−(x1+x2)
α

xs1−1
1 xs2−1

2 dx1dx2 =

∫ ∞

0

∫ ∞

0

∑
n

ϕnx
s1−1
1 xs2−1

2 (x1 + x2)
αn dx1dx2,
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and now from the first rule we get∫ ∞

0

∫ ∞

0

∑
n

ϕnx
s1−1
1 xs2−1

2 (x1 + x2)
αn dx,=

∑
n

ϕn

∫ ∞

0

∫ ∞

0

∑
j,k

ϕjϕkx
j+s1−1
1 xk+s2−1

2 ⟨−αn+ k + j⟩/Γ(−αn) =

∑
n,j,k

ϕnϕjϕk⟨j + s1⟩⟨k + s2⟩⟨−αn+ k + j⟩/Γ(−αn).

Now to find our formula using rule 3 requires us to solve the equations−α 1 1
0 1 0
0 0 1

nj
k

 =

 0
−s1
−s2

 .

Which gives the solutions j∗ = −s1, k
∗ = −s2, n = − s1+s2

α and the determinant of the matrix is −α
hence, ∑

n,j,k

ϕnϕjϕk⟨j + s1⟩⟨k + s2⟩⟨−αn+ k + j⟩/Γ(−αn) =
1

α

Γ(s1)Γ(s2)

Γ(s1 + s2)
Γ

(
s1 + s2

α

)
.

Which in turn gives us the computation∫ ∞

0

∫ ∞

0

e−(x1+x2)
α

xs1−1
1 xs2−1

2 dx1dx2 =
1

α

Γ(s1)Γ(s2)

Γ(s1 + s2)
Γ

(
s1 + s2

α

)
.
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